skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jerrard, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is well-known that under suitable hypotheses, for a sequence of solutions of the (simplified) Ginzburg–Landau equations-\Delta u_{\varepsilon} +\varepsilon^{-2}(|u_{\varepsilon}|^{2}-1)u_{\varepsilon} = 0, the energy and vorticity concentrate as\varepsilon\to 0around a codimension2stationary varifold – a (measure-theoretic) minimal surface. Much less is known about the question of whether, given a codimension2minimal surface, there exists a sequence of solutions for which the given minimal surface is the limiting concentration set. The corresponding question is very well-understood for minimal hypersurfaces and the scalar Allen–Cahn equation, and for the Ginzburg–Landau equations when the minimal surface is locally area-minimizing, but otherwise quite open. We consider this question on a3-dimensional closed Riemannian manifold(M,g), and we prove that any embedded nondegenerate closed geodesic can be realized as the asymptotic energy/ vorticity concentration set of a sequence of solutions of the Ginzburg–Landau equations. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026